Zentrum für BrennstoffzellenTechnik GmbH

Fuel cells for long distance emobility

Development status and powertrain concepts

Dr.-Ing. Jörg Karstedt, Coordinator Emobility Hydrogen & Fuel Cells Energy Summit 2013 Berlin, 5.12.2013

Fuel cells for long distance emobility: Content

- ZBT A brief introduction
- Motivation for alternative powertrains
- Automotive fuel cell systems:
 - Status and future development
 - Powertrain concepts
- Conclusion

Fuel cells for long distance emobility: Content

- ZBT A brief introduction
- Motivation for alternative powertrains
- Automotive fuel cell systems:
 - Status and future development
 - Powertrain concepts
- Conclusion

Zentrum für BrennstoffzellenTechnik GmbH: The fuel cell research center

The fuel cell research center:

- Research and development of fuel cells, hydrogen and battery technology
- Focus on industry demand
- Independent service provider
- 100 full time employees + 40 students

Infrastructure:

- 1200 m² laboratory
- 4 confidential laboratories with 220 m²
- Flexible testbenches with advanced measurement and analytics
- 3 climatic chambers incl. vibration testing
- First accredited testing laboratory for fuel cells
- 120 m² injection molding/compound laboratory
- Prototype production line

Zentrum für BrennstoffzellenTechnik GmbH: R&D / service portfolio – main topics

Fuel Processing (stationary / portable)

- Natural gas reformer
- Multi fuel options
- For LT & HT PEM
- For SOFC
- From reactors to systems
- Patented & licensed

Prüflabor Brennstoffzellen Technik

System testing

- Sub- / complete systems
- Material qualification
- Validation of specification
- environmental testing
- Accredited Fuel Cell Testing Laboratory PBT

Production & QS

- Development of production processes
- Quality control
- Traceability

Bipolar plates

- Compound based
- Materials & plates
- For LT & HT PEM
- Different production methods
- Licensed / (patented)

- Qualification (membranes, electrodes, GDL)
- Manufacturing
- LT, MT-PEM

Infrastructure

- Studies / energy analysis
- Safety / modeling
- Assessment
- Marketing
- Testing

Fuel cell systems

- Hydrogen powered
- from stack to application
- 100 1.000 W
- Uninterrupted power supply, APU, special applications

Stack development

- Design, Manufacturing
- Testing
- LT, MT, HT-PEM

Fuel cells for long distance emobility: Content

- ZBT A brief introduction
- Motivation for alternative powertrains
- Automotive fuel cell systems:
 - Status and future development
 - Powertrain concepts
- Conclusion

Motivation for alternative powertrains: Global trends 2050

- World population will increase by 35 % from 6.8 bn. (2009) to 9.2 bn.¹
- Urbanization will rise by 38 % from 51 % (2010) to 70 %²
- Global energy demand will grow by 84 % from 2007 to 2050³
- The number of passenger vehicles will increase by 250 % from 840 mio. (2010) to 2.1 bn.⁴
- Based on current trends the worldwide transport related CO₂ emissions will rise by 75% until 2050⁴

Challenges:

- Availability of primary energy carriers
- Energy security
- GHG emissions

Electricity and Hydrogen: Renewable energy carriers for transport applications

Economy

- Energy carriers with national value chain
 - Crude oil imports Germany 2012: 60 bn. €
- No import dependency
- Supply security

Sustainability

- Production from renewable sources
- No CO₂ emissions
- Storage of fluctuating renewable energy
- Integration of transport sector in renewable energy concept

Mobility

- Performance
- Range
- Refuelling time

Quality of life

- No exhaust emissions
- Noise reduction
- "Clean" infrastructure

Powertrain options for electric vehicles: Battery electric vehicles, fuel cell / battery hybrids and fuel cell range extenders

Battery Electric Vehicle

Fuel Cell/Battery Hybrid

Battery System Fuel Cell System	High energy, > 15 kWh	High power, ~ 1.5 kWh High performance, > 80 kW
Emission free Low Noise Energy Diversity		
Advantages	Highest TTW efficiencyLow operating costPrivate charging	 State of the art range, comfort, refuelling time High continuous power
Challenges	Limitations range, charging time, comfortPublic charging	 High density H₂ infrastructure Increased operating cost
Design criteria Battery Fuel Cell System	■ Range	Peak powerPerformance
Applications	Urban traffic	 High performance long distance (>120km/h, SUVs)

Fuel cells for long distance emobility: Content

- ZBT A brief introduction
- Motivation for alternative powertrains
- Automotive fuel cell systems:
 - Status and future development
 - Powertrain concepts
- Conclusion

Automotive fuel cell systems: Technology status and future development

Achievements and technology status

- 500 FCVs, > 15 Mio. km, > 90.000 refuellings (Portfolio of Powertrains, 2010)
- Customer expectations are met
 - Driving Performance and comfort (low noise)
 - High efficiency/low fuel consumption
 - Short refuelling time
 - Technology proven in hot and cold weather conditions, on- and offroad operation
 - Sufficient range
 - No local emissions
 - Automotive safety standards

Current development focus

- Package / weight optimization
- Range / storage optimization
- Durability
- Hydrogen infrastructure
- Cost: series production, suppliers and technology

Automotive fuel cell systems: Package / weight: Comparison of different powertrain options

Powertrain mass and volume of different vehicle technologies for a 500 km vehicle range:

	Diesel	Plug-In Hybrid	BEV ²⁾	FCV 3)
Packaging				THE STATE OF THE S
Energy storage (type & weight)	Tank 45 kg	Tank, Battery (14,6 kWh) 180 kg E-Range 70 km	Tank, Battery (100 kWh) 830 kg E-Range 500 km	H ₂ -Tank, Battery (1,4 kWh) } 131 kg E-Range 500 km
Energy conversion (type & weight)	ICE Transmission } 215 kg	E-Motor, Inverter, Transmission ICE, Generator Inverter	E-Motor, Inverter, Transmission	E-Motor, Inverter, Transmission, HV DC/DC, FC System
Powertrain weight	260 kg	455 kg	977 kg	407 kg
Powertrain volume	125 I	319 I	760 I	480 I

source: Daimler

Automotive fuel cell systems: Development focus range / storage: Practical driving range

The cruising range has been significantly improved by increasing hydrogen tank pressure (35 MPa => 70 MPa) and system efficiency. (about 300 km => 500 km with practical driving cycle)

Cruising range		
LA#4	790 km	
10-15	830 km	

Toyota in-house test

With single refueling, FCHV-adv successfully traveled between Osaka and Tokyo (560 km) under real-use conditions (air conditioner on, etc.) with enough reserve capacity.

source: Toyota

Automotive fuel cell systems: Cold start performance of current FCEVs

sources: Hyundai

Automotive fuel cell systems: Development focus durability

Increase of fuel cell system durability:

- MEA optimization (membrane polymer, catalyst)
- Optimized coatings for metallic BPP
- Material selection stack and system
- Optimized operating and startup-/ shutdown strategies
- Regeneration procedures
- Accelerated testing and real world performance

Automotive fuel cell systems: Development focus hydrogen infrastructure

Hydrogen Infrastructure

Production / Distribution:

- 22 bn. Nm³ annual industrial hydrogen production in Germany (equates to the demand of 15 mio. FCVs)
- Cost for 1 mio. FCVs: ~ 2 bn. €, scaleable¹

Retail stations:

- Cost for 1 mio. FCVs: ~ 1 bn. €, upfront¹
- Infrastructure cost for FCVs comparable with charging infrastructure cost for battery electric vehicles (BEVs) or plug-ins (PHEVs):
 - FCVs: 1,5 ct/km¹
 - BEVs / PHEVs: 1,5-2,5 ct/km

H₂ Mobility Initiative

Action plan for the construction of a hydrogen refuelling network in Germany by 2023

~400

Stations will Germany's public hydrogen refuelling network cover by 2023. ~90

Kilometers file between the H₁ filling stations on the motorways around the metropolitan areas by 2023 >10

H₁ filling stations will be available in each metropolitan area from 2023

Automotive fuel cell systems: Development focus cost reduction

Focus cost reduction:

- Increase of power density
- Reduction of platinum loading (Tradeoff durability/robustness)
- BOP component cost optimization
- Materials selection
- System integration
- Automation
- Conventional powertrain tech transfer
- Volume/Synergies
- Supply landscape

Fuel cells for long distance emobility: Content

- ZBT A brief introduction
- Motivation for alternative powertrains
- Automotive fuel cell systems:
 - Status and future development
 - Powertrain concepts
- Conclusion

Experiences National Fuel Cell Vehicle Learning Demonstration: System Operation

Program:

- 7 year duration
- 4 OEMs, 183 fuel cell vehicles,2 fuel cell system generations
- 5.8 mio. km, 500.000 individual trips
- 25 fuelling stations, > 150.000kg H₂

System operation:

- Low fuel cell power operation dominant
- Fuel cell systems rarely operated at max. power
- Small share of fuel cell energy generated at high fuel cell power
- But: Max. fuel cell power is THE cost driver for fuel cell systems
- → Fuel cell downsizing enables significant cost reductions

Fuel cell system operating power

Experiences National Fuel Cell Vehicle Learning Demonstration: Degradation

Important degradation parameters

- Current transients
- Low speed/zero speed
- Short trips
- High voltage time/Low current time
- Cold starts
- Starts/Hour
- → Fuel cell range extender operating strategy can be optimized to minimize those degradation effects
- → Load gradients of the fuel cell system have been significantly reduced in Gen 2 systems by hybridization / control strategy

Primary factors affecting fuel cell degradation

Fuel cell transient cycles by mile

Powertrain options for electric vehicles: Battery electric vehicles, fuel cell / battery hybrids and fuel cell range extenders

Fuel Cell/Battery Hybrid

Fuel Cell Range Extender

	•		
Battery System	High energy, > 15 kWh	High power, ~ 1.5 kWh	High energy, ~ 10 kWh
Fuel Cell System Emission free Low Noise Energy Diversity		High performance, > 80 kW	Low cost, ~ 30 kW
Advantages	Highest TTW efficiencyLow operating costPrivate charging	 State of the art range, comfort, refuelling time High continuous power 	 State of the art range, comfort, refuelling time Low operating cost Private charging
Challenges	Limitations range, charging time, comfortPublic charging	 High density H₂ infrastructure Increased operating cost 	 Medium density H₂ infrastructure Limited continuous power
Design criteria Battery Fuel Cell System	Range-	Peak powerPerformance	Optimized TCOAverage power demand
Applications	 Urban traffic 	 High performance long distance (>120km/h, SUVs) 	 Low-cost, emission free long distance emobility

Powertrain options for electric vehicles: ZBT's automotive stack development

Automotive stack development:

- Power density up to 1 W/cm²
- Pressurized operation up to 2.5 bar(a)
- Dry cathode
- Active area 100 cm² and 300 cm²
- Liquid cooling

Stack development in cooperation with

Powertrain options for electric vehicles: ZBT's automotive stack development (II)

ZBT flowfield optimization:

- CFD simulation
- RP manufacturing of flowfields
- Benchmark of RP-flowfields in standardized cell
- Reduction of tooling cost/ development time

Powertrain options for electric vehicles: Comparison of "full power" and "range extender" fuel cell system

Fuel cell range extender

Operating strategy	Highly dynamic	Steady state / limited power gradients
Durability requirement	5.000 h → higher platinum content/cost	2.000 h (reduced for REX operation) → lower platinum content/cost
Start-Up	~5 sec., frequent	> 30 sec., less frequent (REX strategy)
Cooling	Demanding for large stack and high power	Less demanding
Humidification	Complex water management	Less complex water management (limited power gradients)

Powertrain options for electric vehicles: Reference project Fuel cell range extender for battery electric vehicles

BREEZE: Fuel Cell Range Extender (REX) for Battery Electric Vehicles

- Zero emissions during REM operation
- Significant NVH advantages compared to ICE REMs
- High efficiency
- Heat available for cabin heating
- Reduction of battery capacity
- Re-fueling possible in approx. 3 min.

Project Partners:

With financial support from:

Ministerium für Wirtschaft, Energie, Bauen, Wohnen und Verkehr des Landes Nordrhein-Westfalen

Fuel cells for long distance emobility: Conclusion

- A portfolio of different powertrains is required to achieve significant CO₂ reductions in the future
- Emobility enables silent, emission free driving and a diversification of primary energy carriers that are used in the transport sector
- Fuel cells can increase applications and customer acceptance for emobility due to longdistance capability and short refuelling times
- Fuel cell range-extenders complement conventional "full-power" fuel cell vehicles, they
 focus on optimized TCO and lower density refuelling infrastructure
- ZBT offers engineering services for emobility and fuel cell powertrains in cooperation with industrial partners

Zentrum für BrennstoffzellenTechnik GmbH: Fuel cell and battery development support for the automotive industry

Thank you for your attention!

Mit finanzieller Unterstützung:

Ziel2.NRW

Regionale Wettbewerbsfähigkeit und Beschäftigung

Ministerium für Wirtschaft, Energie, Bauen, Wohnen und Verkehr des Landes Nordrhein-Westfalen

Contact:

Dr.-Ing. Jörg Karstedt j.karstedt@zbt-duisburg.de +49 (0)203/7598-1178 www.zbt-duisburg.de